Publications

2025


2024


Banszerus, L., Marshall, W., Andersson, C. W., Lindemann, T., Manfra, M. J., Marcus, C. M., & Vaitiekėnas, S. (2024). Voltage-Controlled Synthesis of Higher Harmonics in Hybrid Josephson Junction Circuits. Physical Review Letters, 133(18), Article 186303. https://doi.org/10.1103/PhysRevLett.133.186303

Rothstein, A., Fischer, A., Achtermann, A., Icking, E., Hecker, K., Banszerus, L., Otto, M., Trellenkamp, S., Lentz, F., Watanabe, K., Taniguchi, T., Beschoten, B., Dolleman, R. J., Kennes, D. M., & Stampfer, C. (2024). Gate-defined flat-band charge carrier confinement in twisted bilayer graphene. arXiv. https://arxiv.org/abs/2409.08154

Banszerus, L., Hecker, K., Wang, L., Möller, S., Watanabe, K., Taniguchi, T., Burkard, G., Volk, C., & Stampfer, C. (2024). Phonon-limited valley life times in single-particle bilayer graphene quantum dots. arXiv. https://doi.org/10.48550/arXiv.2402.16691

2023


Hecker, K., Banszerus, L., Schäpers, A., Möller, S., Peters, A., Icking, E., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2023). Coherent charge oscillations in a bilayer graphene double quantum dot. Nature Communications, 14(1), Article 7911. https://doi.org/10.1038/s41467-023-43541-3

Möller, S., Banszerus, L., Knothe, A., Valerius, L., Hecker, K., Icking, E., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2023). Impact of competing energy scales on the shell-filling sequence in elliptic bilayer graphene quantum dots. Physical Review B, 108(12), Article 125128. https://doi.org/10.1103/PhysRevB.108.125128

Banszerus, L., Möller, S., Hecker, K., Icking, E., Watanabe, K., Taniguchi, T., Hassler, F., Volk, C., & Stampfer, C. (2023). Particle-hole symmetry protects spin-valley blockade in graphene quantum dots. Nature, 618, 51-56. https://doi.org/10.1038/s41586-023-05953-5

Schmidt, P., Banszerus, L., Frohn, B., Blien, S., Watanabe, K., Taniguchi, T., Hüttel, A. K., Beschoten, B., Hassler, F., & Stampfer, C. (2023). Tuning the supercurrent distribution in parallel ballistic graphene Josephson junctions. Physical Review Applied, 20(5), Article 054049. https://doi.org/10.1103/PhysRevApplied.20.054049

2022


Icking, E., Banszerus, L., Wörtche, F., Volmer, F., Schmidt, P., Steiner, C., Engels, S., Hesselmann, J., Goldsche, M., Watanabe, K., Taniguchi, T., Volk, C., Beschoten, B., & Stampfer, C. (2022). Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene. Advanced Electronic Materials, 8(11), Article 2200510. https://doi.org/10.1002/aelm.202200510

Banszerus, L., Hecker, K., Möller, S., Icking, E., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2022). Spin relaxation in a single-electron graphene quantum dot. Nature Communications, 13(1), Article 3637. https://doi.org/10.1038/s41467-022-31231-5

2021


Banszerus, L., Möller, S., Steiner, C., Icking, E., Trellenkamp, S., Lentz, F., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2021). Spin-valley coupling in single-electron bilayer graphene quantum dots. Nature Communications, 12(1), Article 5250. https://doi.org/10.1038/s41467-021-25498-3

Möller, S., Banszerus, L., Knothe, A., Steiner, C., Icking, E., Trellenkamp, S., Lentz, F., Watanabe, K., Taniguchi, T., Glazman, L. I., Fal'ko, V. I., Volk, C., & Stampfer, C. (2021). Probing Two-Electron Multiplets in Bilayer Graphene Quantum Dots. Physical Review Letters, 127(25), Article 256802. https://doi.org/10.1103/PhysRevLett.127.256802

Pogna, E. A. A., Jia, X., Principi, A., Block, A., Banszerus, L., Zhang, J., Liu, X., Sohier, T., Forti, S., Soundarapandian, K., Terrés, B., Mehew, J. D., Trovatello, C., Coletti, C., Koppens, F. H. L., Bonn, M., Wang, H. I., van Hulst, N., Verstraete, M. J., ... Tielrooij, K.-J. (2021). Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons. ACS Nano, 15(7), 11285-11295. https://doi.org/10.1021/acsnano.0c10864

Banszerus, L., Rothstein, A., Icking, E., Möller, S., Watanabe, K., Taniguchi, T., Stampfer, C., & Volk, C. (2021). Tunable interdot coupling in few-electron bilayer graphene double quantum dots. Applied Physics Letters, 118(10), Article 103101. https://doi.org/10.1063/5.0035300

Banszerus, L., Möller, S., Icking, E., Steiner, C., Neumaier, D., Otto, M., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2021). Dispersive sensing of charge states in a bilayer graphene quantum dot. Applied Physics Letters, 118(9), Article 093104. https://doi.org/10.1063/5.0040234

Wirth, K. G., Linnenbank, H., Steinle, T., Banszerus, L., Icking, E., Stampfer, C., Giessen, H., & Taubner, T. (2021). Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photonics, 8(2), 418-423. https://doi.org/10.1021/acsphotonics.0c01442

Banszerus, L., Hecker, K., Icking, E., Trellenkamp, S., Lentz, F., Neumaier, D., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2021). Pulsed-gate spectroscopy of single-electron spin states in bilayer graphene quantum dots. Physical Review B, 103(8), Article L081404. https://doi.org/10.1103/PhysRevB.103.L081404

2020


Banszerus, L., Fabian, T., Möller, S., Icking, E., Heiming, H., Trellenkamp, S., Lentz, F., Neumaier, D., Otto, M., Watanabe, K., Taniguchi, T., Libisch, F., Volk, C., & Stampfer, C. (2020). Electrostatic Detection of Shubnikov–de Haas Oscillations in Bilayer Graphene by Coulomb Resonances in Gate-Defined Quantum Dots. Physica Status Solidi. B: Basic Research, 257(12), Article 2000333. https://doi.org/10.1002/pssb.202000333

Banszerus, L., Rothstein, A., Fabian, T., Möller, S., Icking, E., Trellenkamp, S., Lentz, F., Neumaier, D., Watanabe, K., Taniguchi, T., Libisch, F., Volk, C., & Stampfer, C. (2020). Electron-Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots. Nano Letters, 20(10), 7709-7715. https://doi.org/10.1021/acs.nanolett.0c03227

Leonhardt, A., de la Rosa, C. J. L., Nuytten, T., Banszerus, L., Sergeant, S., Mootheri, V. K., Taniguchi, T., Watanabe, K., Stampfer, C., Huyghebaert, C., & De Gendt, S. (2020). Use of the Indirect Photoluminescence Peak as an Optical Probe of Interface Defectivity in MoS2. Advanced Materials Interfaces, 7(18), Article 2000413. https://doi.org/10.1002/admi.202000413

Banszerus, L., Frohn, B., Fabian, T., Somanchi, S., Epping, A., Müller, M., Neumaier, D., Watanabe, K., Taniguchi, T., Libisch, F., Beschoten, B., Hassler, F., & Stampfer, C. (2020). Observation of the Spin-Orbit Gap in Bilayer Graphene by One-Dimensional Ballistic Transport. Physical Review Letters, 124(17), Article 177701. https://doi.org/10.1103/PhysRevLett.124.177701

Banszerus, L., Möller, S., Icking, E., Watanabe, K., Taniguchi, T., Volk, C., & Stampfer, C. (2020). Single-electron double quantum dots in bilayer graphene. Nano Letters, 20(3), 2005-2011. https://doi.org/10.1021/acs.nanolett.9b05295

Backes, C., Abdelkader, A. M., Alonso, C., Andrieux-Ledier, A., Arenal, R., Azpeitia, J., Balakrishnan, N., Banszerus, L., Barjon, J., Bartali, R., Bellani, S., Berger, C., Berger, R., Ortega, M. M. B., Bernard, C., Beton, P. H., Beyer, A., Bianco, A., Bøggild, P., ... Garcia-Hernandez, M. (2020). Production and processing of graphene and related materials. 2D Materials, 7(2), Article 022001. https://doi.org/10.1088/2053-1583/ab1e0a

Feijoo, P. C., Pasadas, F., Bonmann, M., Asad, M., Yang, X., Generalov, A., Vorobiev, A., Banszerus, L., Stampfer, C., Otto, M., Neumaier, D., Stake, J., & Jimenez, D. (2020). Does carrier velocity saturation help to enhance f max in graphene field-effect transistors? Nanoscale Advances, 2(9), 4179-4186. https://doi.org/10.1039/C9NA00733D

Dauber, J., Reijnders, K. JA., Banszerus, L., Epping, A., Watanabe, K., Taniguchi, T., Katsnelson, M. I., Hassler, F., & Stampfer, C. (2020). Exploiting Aharonov-Bohm oscillations to probe Klein tunneling in tunable pn-junctions in graphene. arXiv. https://doi.org/10.48550/arXiv.2008.02556

Banszerus, L., Libisch, F., Ceruti, A., Blien, S., Watanabe, K., Taniguchi, T., Hüttel, A. K., Beschoten, B., Hassler, F., & Stampfer, C. (2020). Minigap and Andreev bound states in ballistic graphene. arXiv. https://doi.org/10.48550/arXiv.2011.11471

Asad, M., Bonmann, M., Yang, X., Vorobiev, A., Jeppson, K., Banszerus, L., Otto, M., Stampfer, C., Neumaier, D., & Stake, J. (2020). The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties. IEEE Journal of the Electron Devices Society, 8, 457-464. Article 9070193. https://doi.org/10.1109/JEDS.2020.2988630

2019


Graef, H., Wilmart, Q., Rosticher, M., Mele, D., Banszerus, L., Stampfer, C., Taniguchi, T., Watanabe, K., Berroir, J.-M., Bocquillon, E., Fève, G., Teo, E. H. T., & Plaçais, B. (2019). A corner reflector of graphene Dirac fermions as a phonon-scattering sensor. Nature Communications, 10(1), Article 2428. https://doi.org/10.1038/s41467-019-10326-6

Verbiest, G. J., Janssen, H., Xu, D., Ge, X., Goldsche, M., Sonntag, J., Khodkov, T., Banszerus, L., von den Driesch, N., Buca, D., Watanabe, K., Taniguchi, T., & Stampfer, C. (2019). Integrated impedance bridge for absolute capacitance measurements at cryogenic temperatures and finite magnetic fields. Review of Scientific Instruments, 90(8), Article 084706. https://doi.org/10.1063/1.5089207

Bonmann, M., Asad, M., Yang, X., Generalov, A., Vorobiev, A., Banszerus, L., Stampfer, C., Otto, M., Neumaier, D., & Stake, J. (2019). Graphene Field-Effect Transistors With High Extrinsic fT and fmax. IEEE Electron Device Letters, 40(1), 131-134. Article 8552417. https://doi.org/10.1109/LED.2018.2884054

Banszerus, L., Sohier, T., Epping, A., Winkler, F., Libisch, F., Haupt, F., Watanabe, K., Taniguchi, T., Müller-Caspary, K., & Marzari, N. (2019). Extraordinary high room-temperature carrier mobility in graphene-WSe$_2 $ heterostructures. arXiv. https://doi.org/10.48550/arXiv.1909.09523

Vorobiev, A., Bonmann, M., Asad, M., Yang, X., Stake, J., Banszerus, L., Stampfer, C., Otto, M., & Neumaier, D. (2019). Graphene field-effect transistors for millimeter wave amplifiers. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2). Article 8874149 https://doi.org/10.1109/IRMMW-THz.2019.8874149

2018


Suessmeier, C., Abadal, S., Banszerus, L., Thiel, F., Alarcón, E., Wigger, A. K., Cabellos-Aparicio, A., Stampfer, C., Lemme, M., & Bolivar, P. H. (2018). Analysis of a plasmonic graphene antenna for microelectronic applications. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2). Article 8510243 https://doi.org/10.1109/IRMMW-THz.2018.8510243

Banszerus, L., Frohn, B., Epping, A., Neumaier, D., Watanabe, K., Taniguchi, T., & Stampfer, C. (2018). Gate-defined electron-hole double dots in bilayer graphene. Nano Letters, 18(8), 4785-4790. https://doi.org/10.1021/acs.nanolett.8b01303

Epping, A., Banszerus, L., Güttinger, J., Krückeberg, L., Watanabe, K., Taniguchi, T., Hassler, F., Beschoten, B., & Stampfer, C. (2018). Quantum transport through MoS2 constrictions defined by photodoping. Journal of Physics: Condensed Matter, 30(20), Article 205001. https://doi.org/10.1088/1361-648X/aabbb8

Tielrooij, K.-J., Hesp, N. C. H., Principi, A., Lundeberg, M. B., Pogna, E. A. A., Banszerus, L., Mics, Z., Massicotte, M., Schmidt, P., Davydovskaya, D., Purdie, D. G., Goykhman, I., Soavi, G., Lombardo, A., Watanabe, K., Taniguchi, T., Bonn, M., Turchinovich, D., Stampfer, C., ... Koppens, F. H. L. (2018). Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nature Nanotechnology, 13(1), 41-46. https://doi.org/10.1038/s41565-017-0008-8

Yang, X., Vorobiev, A., Jeppson, K., Stake, J., Banszerus, L., Stampfer, C., Otto, M., & Neumaier, D. (2018). Low-frequency Noise Characterization of Graphene FET THz Detectors. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-2)

Graef, H., Mele, D., Rosticher, M., Banszerus, L., Stampfer, C., Taniguchi, T., Watanabe, K., Bocquillon, E., Fève, G., Berroir, JM., Teo, E. H. T., & Plaçais, B. (2018). Ultra-long wavelength Dirac plasmons in graphene capacitors. Journal of Physics: Materials, 1(1), Article 01LT02. https://doi.org/10.1088/2515-7639/aadd8c

2017


Drögeler, M., Banszerus, L., Volmer, F., Taniguchi, T., Watanabe, K., Beschoten, B., & Stampfer, C. (2017). Dry-transferred CVD graphene for inverted spin valve devices. Applied Physics Letters, 111(15), Article 152402. https://doi.org/10.1063/1.5000545

Schmitz, M., Engels, S., Banszerus, L., Watanabe, K., Taniguchi, T., Stampfer, C., & Beschoten, B. (2017). High mobility dry-transferred CVD bilayer graphene. Applied Physics Letters, 110(26), Article 263110. https://doi.org/10.1063/1.4990390

Pogna, E. A. A., Trovatello, C., Tielrooij, K. J., Hesp, N. C. H., Principi, A., Lundeberg, M., Banszerus, L., Massicotte, M., Schmidt, P., Davydovskaya, D., Stampfer, C., Polini, M., Koppens, F. H. L., & Cerullo, G. (2017). Non-equilibrium optical properties of encapsulated graphene. In 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference Article EI_2_4 Optica Publishing Group. https://opg.optica.org/abstract.cfm?uri=EQEC-2017-EI_2_4

Banszerus, L., Janssen, H., Otto, M., Epping, A., Taniguchi, T., Watanabe, K., Beschoten, B., Neumaier, D., & Stampfer, C. (2017). Identifying suitable substrates for high-quality graphene-based heterostructures. 2D Materials, 4(2), Article 025030. https://doi.org/10.1088/2053-1583/aa5b0f

2016



Neumann, C., Banszerus, L., Schmitz, M., Reichardt, S., Sonntag, J., Taniguchi, T., Watanabe, K., Beschoten, B., & Stampfer, C. (2016). Line shape of the Raman 2D peak of graphene in van der Waals heterostructures. Physica Status Solidi. B: Basic Research, 253(12), 2326-2330. https://doi.org/10.1002/pssb.201600283

Drögeler, M., Franzen, C., Volmer, F., Pohlmann, T., Banszerus, L., Wolter, M., Watanabe, K., Taniguchi, T., Stampfer, C., & Beschoten, B. (2016). Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Letters, 16(6), 3533-3539. https://doi.org/10.1021/acs.nanolett.6b00497

Banszerus, L., Schmitz, M., Engels, S., Goldsche, M., Watanabe, K., Taniguchi, T., Beschoten, B., & Stampfer, C. (2016). Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. Nano Letters, 16(2), 1387-1391. https://doi.org/10.1021/acs.nanolett.5b04840